Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28861, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601595

RESUMO

In the context of the increasingly diversified blockchain technology, interoperability among heterogeneous blockchains has become key to further advancing this field. Existing cross-chain technologies, while facilitating data and asset exchange between different blockchains to some extent, have exposed issues such as insufficient security, low efficiency, and inconsistent standards. Consequently, these issues give rise to significant obstacles in terms of both scalability and seamless communication among blockchains within a multi-chain framework. To address this, this paper proposes an efficient method for cross-chain interaction in a multi-chain environment. Building upon the traditional sidechain model, this method employs smart contracts and hash time-locked contracts (HTLCs) to design a cross-chain interaction scheme. This approach decentralizes the execution of locking, verifying, and unlocking stages in cross-chain transactions, effectively avoiding centralization risks associated with third-party entities in the process. It also greatly enhances the efficiency of fund transfers between the main chain and sidechains, while ensuring the security of cross-chain transactions to some extent. Additionally, this paper innovatively proposes a cross-chain data interaction strategy. Through smart contracts on the main chain, data from sidechains can be uploaded, verified, and stored on the main chain, achieving convenient and efficient cross-chain data sharing. The contribution of this paper is the development of a decentralized protocol that coordinates the execution of cross-chain interactions without the need to trust external parties, thereby reducing the risk of centralization and enhancing security. Experimental results validate the effectiveness of our solution in increasing transaction security and efficiency, with significant improvements over existing models. Our experiments emphasize the system's ability to handle a variety of transaction scenarios with improved throughput and reduced latency, highlighting the practical applicability and scalability of our approach.

2.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687779

RESUMO

With the widespread application of 5G technology, there has been a significant surge in wireless video service demand and video traffic due to the proliferation of smart terminal devices and multimedia applications. However, the complexity of terminal devices, heterogeneous transmission channels, and the rapid growth of video traffic present new challenges for wireless network-based video applications. Although scalable video coding technology effectively improves video transmission efficiency in complex networks, traditional cellular base stations may struggle to handle video transmissions for all users simultaneously, particularly in large-scale networks. To tackle this issue, we propose a scalable video multicast scheme based on user demand perception and Device-to-Device (D2D) communication, aiming to enhance the D2D multicast network transmission performance of scalable videos in cellular D2D hybrid networks. Firstly, we analyze user interests by considering their video viewing history and factors like video popularity to determine their willingness for video pushing, thereby increasing the number of users receiving multicast clusters. Secondly, we design a cluster head selection algorithm that considers users' channel quality, social parameters, and video quality requirements. Performance results demonstrate that the proposed scheme effectively attracts potential request users to join multicast clusters, increases the number of users in the clusters, and meets diverse user demands for video quality.

3.
Sensors (Basel) ; 23(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687889

RESUMO

The rapid growth of the Internet of Things (IoT) and big data has raised security concerns. Protecting IoT big data from attacks is crucial. Detecting real-time network attacks efficiently is challenging, especially in the resource-limited IoT setting. To enhance IoT security, intrusion detection systems using traffic features have emerged. However, these face difficulties due to varied traffic feature formats, hindering fast and accurate detection model training. To tackle accuracy issues caused by irrelevant features, a new model, LVW-MECO (LVW enhanced with multiple evaluation criteria), is introduced. It uses the LVW (Las Vegas Wrapper) algorithm with multiple evaluation criteria to identify pertinent features from IoT network data, boosting intrusion detection precision. Experimental results confirm its efficacy in addressing IoT security problems. LVW-MECO enhances intrusion detection performance and safeguards IoT data integrity, promoting a more secure IoT environment.

4.
Sensors (Basel) ; 23(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37688086

RESUMO

In the realm of hyperspectral image classification, the pursuit of heightened accuracy and comprehensive feature extraction has led to the formulation of an advance architectural paradigm. This study proposed a model encapsulated within the framework of a unified model, which synergistically leverages the capabilities of three distinct branches: the swin transformer, convolutional neural network, and encoder-decoder. The main objective was to facilitate multiscale feature learning, a pivotal facet in hyperspectral image classification, with each branch specializing in unique facets of multiscale feature extraction. The swin transformer, recognized for its competence in distilling long-range dependencies, captures structural features across different scales; simultaneously, convolutional neural networks undertake localized feature extraction, engendering nuanced spatial information preservation. The encoder-decoder branch undertakes comprehensive analysis and reconstruction, fostering the assimilation of both multiscale spectral and spatial intricacies. To evaluate our approach, we conducted experiments on publicly available datasets and compared the results with state-of-the-art methods. Our proposed model obtains the best classification result compared to others. Specifically, overall accuracies of 96.87%, 98.48%, and 98.62% were obtained on the Xuzhou, Salinas, and LK datasets.

5.
Sensors (Basel) ; 23(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765977

RESUMO

To avoid rounding errors associated with the limited representation of significant digits when applying the floating-point Krawtchouk transform in image processing, we present an integer and reversible version of the Krawtchouk transform (IRKT). This proposed IRKT generates integer-valued coefficients within the Krawtchouk domain, seamlessly aligning with the integer representation commonly utilized in lossless image applications. Building upon the IRKT, we introduce a novel 3D reversible data hiding (RDH) algorithm designed for the secure storage and transmission of extensive medical data within the IoMT (Internet of Medical Things) sector. Through the utilization of the IRKT-based 3D RDH method, a substantial amount of additional data can be embedded into 3D carrier medical images without augmenting their original size or compromising information integrity upon data extraction. Extensive experimental evaluations substantiate the effectiveness of the proposed algorithm, particularly regarding its high embedding capacity, imperceptibility, and resilience against statistical attacks. The integration of this proposed algorithm into the IoMT sector furnishes enhanced security measures for the safeguarded storage and transmission of massive medical data, thereby addressing the limitations of conventional 2D RDH algorithms for medical images.

6.
Sensors (Basel) ; 23(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631830

RESUMO

Hybrid beamforming is a viable method for lowering the complexity and expense of massive multiple-input multiple-output systems while achieving high data rates on track with digital beamforming. To this end, the purpose of the research reported in this paper is to assess the effectiveness of the three architectural beamforming techniques (Analog, Digital, and Hybrid beamforming) in massive multiple-input multiple-output systems, especially hybrid beamforming. In hybrid beamforming, the antennas are connected to a single radio frequency chain, unlike digital beamforming, where each antenna has a separate radio frequency chain. The beam formation toward a particular angle depends on the channel state information. Further, massive multiple-input multiple-output is discussed in detail along with the performance parameters like bit error rate, signal-to-noise ratio, achievable sum rate, power consumption in massive multiple-input multiple-output, and energy efficiency. Finally, a comparison has been established between the three beamforming techniques.

7.
Math Biosci Eng ; 20(5): 9246-9267, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37161241

RESUMO

The integration of the Internet of Bio Nano Things (IoBNT) with artificial intelligence (AI) and molecular communications technology is now required to achieve eHealth, specifically in the targeted drug delivery system (TDDS). In this work, we investigate an analytical framework for IoBNT with Forster resonance energy transfer (FRET) nanocommunication to enable intelligent bio nano thing (BNT) machine to accurately deliver therapeutic drug to the diseased cells. The FRET nanocommunication is accomplished by using the well-known pair of fluorescent proteins, EYFP and ECFP. Furthermore, the proposed IoBNT monitors drug transmission by using the quenching process in order to reduce side effects in healthy cells. We investigate the IoBNT framework by driving diffusional rate models in the presence of a quenching process. We evaluate the performance of the proposed framework in terms of the energy transfer efficiency, diffusion-controlled rate and drug loss rate. According to the simulation results, the proposed IoBNT with the intelligent bio nano thing for monitoring the quenching process can significantly achieve high energy transfer efficiency and low drug delivery loss rate, i.e., accurately delivering the desired therapeutic drugs to the diseased cell.


Assuntos
Internet das Coisas , Telemedicina , Transferência Ressonante de Energia de Fluorescência , Inteligência Artificial , Internet
8.
Sci Rep ; 13(1): 2746, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797342

RESUMO

With the rapid development of Industry 4.0, the data security of Industrial Internet of Things in the Industry 4.0 environment has received widespread attention. Blockchain has the characteristics of decentralization and tamper-proof. Therefore, it has a natural advantage in solving the data security problem of Industrial Internet of Things. However, current blockchain technologies face challenges in providing consistency, scalability and data security at the same time in Industrial Internet of Things. To address the scalability problem and data security problem of Industrial Internet of Things, this paper constructs a highly scalable data storage mechanism for Industrial Internet of Things based on coded sharding blockchain. The mechanism uses coded sharding technology for data processing to improve the fault tolerance and storage load of the blockchain to solve the scalability problem. Then a cryptographic accumulator-based data storage scheme is designed which connects the cryptographic accumulator with the sharding nodes to save storage overhead and solve the security problem of data storage and verification. Finally, the scheme is proved to be security and the performance of the scheme is evaluated.

9.
Big Data ; 11(2): 128-136, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-32673064

RESUMO

Fog computing is playing a vital role in data transmission to distributed devices in the Internet of Things (IoT) and another network paradigm. The fundamental element of fog computing is an additional layer added between an IoT device/node and a cloud server. These fog nodes are used to speed up time-critical applications. Current research efforts and user trends are pushing for fog computing, and the path is far from being paved. Unless it can reap the benefits of applying software-defined networks and network function virtualization techniques, network monitoring will be an additional burden for fog. However, the seamless integration of these techniques in fog computing is not easy and will be a challenging task. To overcome the issues as already mentioned, the fog-based delay-sensitive data transmission algorithm develops a robust optimal technique to ensure the low and predictable delay in delay-sensitive applications such as traffic monitoring and vehicle tracking applications. The method reduces latency by storing and processing the data close to the source of information with optimal depth in the network. The deployment results show that the proposed algorithm reduces 15.67 ms round trip time and 2 seconds averaged delay on 10 KB, 100 KB, and 1 MB data set India, Singapore, and Japan Amazon Datacenter Regions compared with conventional methodologies.


Assuntos
Internet das Coisas , Multimídia , Algoritmos , Software , Japão
10.
PeerJ Comput Sci ; 7: e437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954233

RESUMO

In today's cyber world, the demand for the internet is increasing day by day, increasing the concern of network security. The aim of an Intrusion Detection System (IDS) is to provide approaches against many fast-growing network attacks (e.g., DDoS attack, Ransomware attack, Botnet attack, etc.), as it blocks the harmful activities occurring in the network system. In this work, three different classification machine learning algorithms-Naïve Bayes (NB), Support Vector Machine (SVM), and K-nearest neighbor (KNN)-were used to detect the accuracy and reducing the processing time of an algorithm on the UNSW-NB15 dataset and to find the best-suited algorithm which can efficiently learn the pattern of the suspicious network activities. The data gathered from the feature set comparison was then applied as input to IDS as data feeds to train the system for future intrusion behavior prediction and analysis using the best-fit algorithm chosen from the above three algorithms based on the performance metrics found. Also, the classification reports (Precision, Recall, and F1-score) and confusion matrix were generated and compared to finalize the support-validation status found throughout the testing phase of the model used in this approach.

11.
Sensors (Basel) ; 20(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796687

RESUMO

Wireless Rechargeable Sensor Networks (WRSN) are not yet fully functional and robust due to the fact that their setting parameters assume fixed control velocity and location. This study proposes a novel scheme of the WRSN with mobile sink (MS) velocity control strategies for charging nodes and collecting its data in WRSN. Strip space of the deployed network area is divided into sub-locations for variant corresponding velocities based on nodes energy expenditure demands. The points of consumed energy bottleneck nodes in sub-locations are determined based on gathering data of residual energy and expenditure of nodes. A minimum reliable energy balanced spanning tree is constructed based on data collection to optimize the data transmission paths, balance energy consumption, and reduce data loss during transmission. Experimental results are compared with the other methods in the literature that show that the proposed scheme offers a more effective alternative in reducing the network packet loss rate, balancing the nodes' energy consumption, and charging capacity of the nodes than the competitors.

12.
Sensors (Basel) ; 20(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357404

RESUMO

Log anomaly detection is an efficient method to manage modern large-scale Internet of Things (IoT) systems. More and more works start to apply natural language processing (NLP) methods, and in particular word2vec, in the log feature extraction. Word2vec can extract the relevance between words and vectorize the words. However, the computing cost of training word2vec is high. Anomalies in logs are dependent on not only an individual log message but also on the log message sequence. Therefore, the vector of words from word2vec can not be used directly, which needs to be transformed into the vector of log events and further transformed into the vector of log sequences. To reduce computational cost and avoid multiple transformations, in this paper, we propose an offline feature extraction model, named LogEvent2vec, which takes the log event as input of word2vec to extract the relevance between log events and vectorize log events directly. LogEvent2vec can work with any coordinate transformation methods and anomaly detection models. After getting the log event vector, we transform log event vector to log sequence vector by bary or tf-idf and three kinds of supervised models (Random Forests, Naive Bayes, and Neural Networks) are trained to detect the anomalies. We have conducted extensive experiments on a real public log dataset from BlueGene/L (BGL). The experimental results demonstrate that LogEvent2vec can significantly reduce computational time by 30 times and improve accuracy, comparing with word2vec. LogEvent2vec with bary and Random Forest can achieve the best F1-score and LogEvent2vec with tf-idf and Naive Bayes needs the least computational time.

13.
Sensors (Basel) ; 20(5)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121445

RESUMO

The proper utilization of road information can improve the performance of relay-node selection methods. However, the existing schemes are only applicable to a specific road structure, and this limits their application in real-world scenarios where mostly more than one road structure exists in the Region of Interest (RoI), even in the communication range of a sender. In this paper, we propose an adaptive relay-node selection (ARNS) method based on the exponential partition to implement message broadcasting in complex scenarios. First, we improved a relay-node selection method in the curved road scenarios through the re-definition of the optimal position considering the distribution of the obstacles. Then, we proposed a criterion of classifying road structures based on their broadcast characteristics. Finally, ARNS is designed to adaptively apply the appropriate relay-node selection method based on the exponential partition in realistic scenarios. Simulation results on a real-world map show that the end-to-end broadcast delay of ARNS is reduced by at least 13.8% compared to the beacon-based relay-node selection method, and at least 14.0% compared to the trinary partitioned black-burst-based broadcast protocol (3P3B)-based relay-node selection method. The broadcast coverage is increased by 3.6-7% in curved road scenarios, with obstacles benefitting from the consideration of the distribution of obstacles. Moreover, ARNS achieves a higher and more stable packet delivery ratio (PDR) than existing methods profiting from the adaptive selection mechanism.

14.
Sensors (Basel) ; 20(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098444

RESUMO

With the continuous development of science and engineering technology, our society has entered the era of the mobile Internet of Things (MIoT). MIoT refers to the combination of advanced manufacturing technologies with the Internet of Things (IoT) to create a flexible digital manufacturing ecosystem. The wireless communication technology in the Internet of Things is a bridge between mobile devices. Therefore, the introduction of machine learning (ML) algorithms into MIoT wireless communication has become a research direction of concern. However, the traditional key-based wireless communication method demonstrates security problems and cannot meet the security requirements of the MIoT. Based on the research on the communication of the physical layer and the support vector data description (SVDD) algorithm, this paper establishes a radio frequency fingerprint (RFF or RF fingerprint) authentication model for a communication device. The communication device in the MIoT is accurately and efficiently identified by extracting the radio frequency fingerprint of the communication signal. In the simulation experiment, this paper introduces the neighborhood component analysis (NCA) method and the SVDD method to establish a communication device authentication model. At a signal-to-noise ratio (SNR) of 15 dB, the authentic devices authentication success rate (ASR) and the rogue devices detection success rate (RSR) are both 90%.

15.
Comput Stand Interfaces ; 71: 103442, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34170994

RESUMO

Customer relationship management (CRM) is an innovative technology that seeks to improve customer satisfaction, loyalty, and profitability by acquiring, developing, and maintaining effective customer relationships and interactions with stakeholders. Numerous researches on CRM have made significant progress in several areas such as telecommunications, banking, and manufacturing, but research specific to the healthcare environment is very limited. This systematic review aims to categorise, summarise, synthesise, and appraise the research on CRM in the healthcare environment, considering the absence of coherent and comprehensive scholarship of disparate data on CRM. Various databases were used to conduct a comprehensive search of studies that examine CRM in the healthcare environment (including hospitals, clinics, medical centres, and nursing homes). Analysis and evaluation of 19 carefully selected studies revealed three main research categories: (i) social CRM 'eCRM'; (ii) implementing CRMS; and (iii) adopting CRMS; with positive outcomes for CRM both in terms of patients relationship/communication with hospital, satisfaction, medical treatment/outcomes and empowerment and hospitals medical operation, productivity, cost, performance, efficiency and service quality. This is the first systematic review to comprehensively synthesise and summarise empirical evidence from disparate CRM research data (quantitative, qualitative, and mixed) in the healthcare environment. Our results revealed that substantial gaps exist in the knowledge of using CRM in the healthcare environment. Future research should focus on exploring: (i) other potential factors, such as patient characteristics, culture (of both the patient and hospital), knowledge management, trust, security, and privacy for implementing and adopting CRMS and (ii) other CRM categories, such as mobile CRM (mCRM) and data mining CRM.

16.
Sensors (Basel) ; 20(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905910

RESUMO

In the IoT (Internet of Things) environment, smart homes, smart grids, and telematics constantly generate data with complex attributes. These data have low heterogeneity and poor interoperability, which brings difficulties to data management and value mining. The promising combination of blockchain and the Internet of things as BCoT (blockchain of things) can solve these problems. This paper introduces an innovative method DCOMB (dual combination Bloom filter) to firstly convert the computational power of bitcoin mining into the computational power of query. Furthermore, this article uses the DCOMB method to build blockchain-based IoT data query model. DCOMB can implement queries only through mining hash calculation. This model combines the data stream of the IoT with the timestamp of the blockchain, improving the interoperability of data and the versatility of the IoT database system. The experiment results show that the random reading performance of DCOMB query is higher than that of COMB (combination Bloom filter), and the error rate of DCOMB is lower. Meanwhile, both DCOMB and COMB query performance are better than MySQL (My Structured Query Language).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...